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Some Properties of Rank-2 Lattice Rules* 

By J. N. Lyness and I. H. Sloan 

Abstract. A rank-2 lattice rule is a quadrature rule for the (unit) s-dimensional hy- 
percube, of the form 

n1 n2 

Qf = (1/nin2) E E f(jizi/ni +j2z2/n2), 
j1= i2=1 

which cannot be re-expressed in an analogous form with a single sum. Here f is a 
periodic extension of f, and zl, Z2 are integer vectors. In this paper we discuss these 
rules in detail; in particular, we categorize a special subclass, whose leading one- and 
two-dimensional projections contain the maximum feasible number of abscissas. We 
show that rules of this subclass can be expressed uniquely in a simple tricycle form. 

1. Introduction. 
1.1. Background to Lattice Rules. Lattice rules are numerical quadrature rules for 

integration over an s-dimensional hypercube. They are generalizations of the one- 
dimensional trapezoidal rule which employ abscissas that lie on an s-dimensional 
lattice. A well-known and important subclass of lattice rules are the number- 
theoretic rules of Korobov [7]. There is a large literature devoted to number- 
theoretic rules, some of which appears in the reference list. 

Lattice rules were first explicitly introduced by Sloan [10] and Sloan and Ka- 
choyan [11]. In terms of an s-dimensional integration lattice L which contains the 
integer lattice Z8, the corresponding lattice rule is defined by 

(1 .1) QLf 1 E(Q Qf=V(QL) 
) 

xEA(QL) 

where A(QL) is the set of lattice points contained within the half-open unit cube 
of integration, and V(QL) is the number of such points. Here f is a periodic 
continuation of f. In Sloan and Kachoyan [11], many properties of lattice rules were 
derived, based on definition (1.1) and under the assumption that f is continuous. 

The theory was developed further in Sloan and Lyness [12], exploiting the more 
convenient definition (1.2) below. It is almost obvious that when t and ni are 
positive integers and the components of zi = (z1 z2 .. z Zj-) are integers, the form 

nj n2 nt Z jZ 
..jZ (1.2) 1 .. ~i i- ?i ?..i- 

(1.2) nln2 * 
nt~.1=1i.2=1 jt=l ni n2 nt) 
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is a lattice rule. Of course, the abscissas in (1.2) do not necessarily lie in the half- 
open unit cube, but, because of the periodic property of f, they may be transferred 
to the half-open unit cube by subtracting appropriate integer vectors. It can also be 
shown, with little difficulty, that any lattice rule (1.1) may be expressed in the form 
(1.2). In fact, the same lattice rule may be expressed in this form in many different 
ways, i.e., using different selections of the parameters t, ni, zi (i = 1, 2,.. . , t). We 
refer to (1.2) as a t-cycle form of the rule Q and to t as this form's cycle number. 
In general this form is repetitive, each distinct point (after transfer to the half-open 
unit cube) being counted n1n2 ... nt/v(Q) times. It is termed a nonrepetitive form 
when the number of points v(Q) equals n1n2 ... nt. 

The following results are established in Sloan and Lyness [12] by the use of finite 
Abelian group theory. 

(i) We define the rank m of a given rule Qf as its minimum possible cycle 
number; this is the smallest value of t for which Qf may be expressed in the form 
(1.2). We showed that in this case z1, Z2,... , Zm are linearly independent and that 
1 < m < s. 

(ii) When expressed nonrepetitively in form (1.2) with t = m, where m is the 
rank, the values of ni, n2,. . , nm may be chosen to satisfy 

(1.3) ni divides n_-, i = 2,... ,m. 

In this case the integers n1, n2, ...,nm are uniquely determined and nm > 1. We 
term this set of integers the invariants of Qf. (In some contexts we extend the 
invariant list to contain s integers by defining nm+l = nm+2 = = n, = 1.) 

(iii) A lattice rule Qf expressed nonrepetitively in the form (1.2) has rank m = t 
if and only if the denominators ni, n2,... , nt have a nontrivial common factor. 
Moreover, in this case, if the denominators satisfy (1.3), they are indeed the invari- 
ants. 

Note that, while for a given rule the rank m and invariants ni are uniquely 
defined, there remain many different choices for zi (i = 1, . . ., mi). 

(iv) If the rank m is equal to the dimension s, then the rule Qf with invariants 
ni, n2, ... , n8 is an n-9 copy of a rule having invariants nl/n8, n2/n, .. , n8/n5. 

(v) If the s-dimensional lattice rule Qf has rank m and invariants ni 2,2 , ... nm, 

any s'-dimensional projection of Qf with s' < s has rank m' < m and invariants 

nl, n2, . . , n , which satisfy 

(1.4) n'i divides ni, i = 1, 2,.. .,m'. 

Within this classification scheme, a Korobov-Conroy rule and the product-trape- 
zoidal rule have ranks 1 and s, respectively. The present work is motivated by 
the consideration that rules of intermediate rank, which have not been explicitly 
considered before, might conceivably perform better in some situations than either 
of these two familiar types. 

1.2. Scope of This Paper. The present paper is about rank-2 rules, those having 
m = 2. We deal principally with situations in which the conditions on zi and 
ni (i = 1, 2) ensure that Qf has favorable projections in a sense specified in the 
definitions in Section 2 below. 

Specifically, we treat an s-dimensional rule for which some or all of its two- 
dimensional projections have the same number of distinct abscissas as the s-dimen- 
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sional rule itself, and in addition one or all of its one-dimensional projections also 
have the maximum feasible number of points. Properties of rule projections, and 
the concept of a rule with "full" projections of various kinds, are defined and dis- 
cussed in Section 2. For certain rules of this kind it is possible to write down simple 
representations in which all quantities are uniquely defined. This theory is devel- 
oped in Sections 3 to 5, the principal results being Theorems 3.3 and 5.4. Such 
representations may prove useful for computer searches for cost-effective rules. 

2. Rule Projections. It is generally the case in numerical quadrature that 
one would expect a more accurate approximation to an integral using a rule that 
employs more abscissas. A more sophisticated expectation is that among rules 
using the same number of abscissas, the rule which "spreads these out" more is 
likely to be the more suitable. One way of effecting this is to try to design rules 
so that their projections in the different lower-dimensional manifolds use as many 
points as is feasible. In this paper we look at the structure of rank-2 rules with 
prescribed conditions (defined below) on their lower-dimensional projections. In a 
separate paper, we shall deal with the error analysis involved. 

We recall the definition of an s'-dimensional projection of an s-dimensional rule 
V 

(2.1) Q9f W f (4 2, . . 
j=1 

The principal s'-dimensional projection is the s'-dimensional rule 
v 

(2.2) Qf W E (4 2.... I ). 
j=1 

This is obtained by omitting the final s - s' components of each abscissa, thus 
constructing a rule for the cube C" from one for C8. Note that (2.2) may be in 
repetitive form even if (2.1) is not. Note too that (2.2) is simply one of s!/s'!(s-s')! 
different s'-dimensional projections of QJf. Thus the s'-dimensional projection of 

QJf into the space determined by the components x-1, xi2,... , xis', where 1 < ji < 

i2 < ... < J91 _< Si iS 

(2.3) Q8lf = Ewjf (xi I . xi xj). 

j=1 

A mild reformulation of Theorem 5.1 of Sloan and Lyness [12], summarized in 
(v) above, follows. 

THEOREM 2. 1. Let Q, be an s-dimensional lattice rule having invariants nl, 
n2,... , n,. Then any s'-dimensional projection Q8, of Q, is a lattice rule having 
invariants n', n',..., n ,, where n' divides ni for i =1, 2,...,s'. 

From this, it follows that 

(2.4) 1v(Q8,) = n'n* n', < nin2 n*. *n, 

providing an upper bound on the number of points required by any s'-dimensional 
projection. 

Definition. Q,, is a full projection of a lattice rule Q, with invariants nl, 
n2,* n,n8 if Q8, has invariants n , n2,. ..,,. 
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There exist many possible definitions, specifying different selections of projec- 
tions of Q8 which may be full. For our purposes we shall be able to provide all our 
results in terms of the following definition pair: 

Definition. The s-dimensional rule Q8, having invariants n1, n2, ..., n, is said 
to have full principal projections in all dimensions if the s'-dimensional principal 
projection Q8, has invariants nl, n2,..., n8, for s' = 1,2,... , S. 

Definition. The s-dimensional rule Q8, having invariants nl, n2,... ,n, ,is said 
to have a complete set of full projections in all dimensions if every s'-dimensional 
projection Q8, has invariants nl, n2,..., n8, for s' = 1, 2,... , S. 

Subsequently, we may suppress the phrase "in all dimensions" if no confusion 
seems likely. 

We now specialize these definitions to rules of rank 2. It follows from the first 
definition that an s-dimensional rank-2 lattice rule, with invariants n1, n2, has full 
principal projections if and only if 

(i) the one-dimensional principal projection has invariant n1, i.e., is the nl-panel 
trapezoidal rule; 

(ii) the two-dimensional principal projection has invariants nl, n2; and 

(iii) each s'-dimensional principal projection has invariants ni, n2 for s' = 

3,4,...,s- 1. 

Item (iii) is redundant, since by a double application of Theorem 2.1 the invari- 
ants of the s'-dimensional principal projections with 2 < s' < s are sandwiched 
between those of the rule itself and those of the two-dimensional principal projec- 
tion. 

The second condition can be streamlined. In view of (i), the two-dimensional 
principal projection has first invariant nl; thus, we may replace (ii) by any condition 
that ensures that the second invariant is n2. One such possibility is 

(ii)' the two-dimensional principal projection is an n2copy rule. 
Finally, in view of Lemma 6.3 of Sloan and Lyness [12], we may replace (ii)' by 
(ii)", namely, 

(ii)" The abscissa set A(Q2) of the two-dimensional principal projection contains 
the abscissa set A(T22) of the n2-point trapezoidal rule as a subgroup. 

The following theorem summarizes the preceding discussion. 

THEOREM 2.2. An s-dimensional rank-2 lattice rule, having invariants nl, n2, 
has full principal projections if and only if 

(i) the one-dimensional principal projection has invariant n1, i.e., is the n, -panel 
trapezoidal rule, and 

(ii)" the abscissa set A(Q2) of the principal two-dimensional projection contains 
the abscissa set A(T22) of the n2-point trapezoidal rule as a subgroup. 

A further application of Theorem 2.1 (and in particular, (2.4)) allows the hy- 
potheses in the theorem to be further weakened, and hence more easily tested. 
Thus in the following statement it is not necessary to know in advance the rank or 
invariants of the rule, or even to know in advance that the given form of the rule is 
nonrepetitive. 



SOME PROPERTIES OF RANK-2 LATTICE RULES 631 

THEOREM 2.3. An s-dimensional lattice rule Qf with v(Q) < n1n2, where 
ni > n'2 > 1 and n2 divides nl, is a rank-2 rule with invariants nl, n2 and full 
principal projections if and only if 

(i) the one-dimensional principal projection has invariant nl, and 
(ii)" the abscissa set A(Q2) of the principal two-dimensional projection contains 

A(T2 ) as a subgroup. 

A companion theorem, relating to complete sets of projections, may be proved 
in the identical way. 

THEOREM 2.4. An s-dimensional lattice rule Qf with v(Q) < n1n2, where 

n, > n2- > 1 and n2 divides nl, is a rank-2 rule with invariants ni, n2 and a 
complete set of full projections if and only if 

(i) every one-dimensional projection has invariant nl, and 
(ii)" the abscissa set A(Q2) of every two-dimensional projection contains A(T22) 

as a subgroup. 

In the next two sections we develop conditions on the rule parameters nl, n2, 
Z1, Z2, that allow us to identify rank-2 rules having full projections in the sense of 
these theorems. 

3. Rank-2 Rules Having Full Principal Projections. Fundamental to the 
discussion of rank-2 rules is the question of how to recognize whether the rule forms 
(3.3) and (3.12) below are repetitive or not. We commence this section with two 
lemmas needed subsequently in dealing with rank-2 rules. We denote the highest 
common factor of a1, a2, ..., ak by gcd(al, a2, ..., ak), or simply by (a1, a2,..., ak) 
when no confusion is likely to arise. Note that (a, 0) = laI and (a, b, 0) = (a, b). 

LEMMA 3.1. A one-dimensional lattice rule in the (bicycle) form 

1nrn 

(3.1) Qlf = 2 E E: f jl 
' 

+ j2 n n 
1=1 i2=1 

has v(Q) = nr (and hence is the trapezoidal rule T1 Tf) if and only if 

(3.2) (zi,r) = 1 and (zl,z2,n)=1. 

The proof (not given in detail here) rests on three elementary propositions. With 
{a} denoting the fractional part of a, these are as follows: 

(a) If the set of points {(j1z1 + j2z2r)/nr} includes the point 1/nr, (3.1) is the 
(nr)-panel trapezoidal rule; otherwise it is not. 

(b) The pair of conditions (3.2) coincides with the single condition (Zl, z2r, nr) 
=1. 

(c) A necessary and sufficient condition that there exist integers jl, j2 such that 

Aji + Bj2 1 (modulo C) 

is simply (A, B, C) = 1. 

The second lemma is deeper. 
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LEMMA 3.2. Let Q2f be the two-dimensional lattice rule 

1 n 
/.(z2z) ( ,21) 

(3.3) Q2f=- E f (il ? +22 n ) - 

This coincides with the product trapezoidal rule 

(3.4) Tnf= f 
k 2 

n2 
;j2-E 

E2- n ) k1=1 k2=1 

if and only if 

(3.5) (D, n) = 1, 
where 

(3.6) D = =4Z 2- Z414Z2 
Proof. If rules (3.3) and (3.4) coincide, each assignment of (k1, k2) (modulo n) in 

(3.4) corresponds to an assignment of (jl, 12) (modulo n) in (3.3), the relationship 
being 

jiz 1+ j2z2 = k1 (modulo n), 

(3z.7 +j2Z2 = k2 (modulo n). 
By a standard manipulation we obtain 

(3.8) j2(zlz2 - Z2Z1) = k2z1- k1z2 (modulo n), 

which must have a solution 12 for each assignment of (k1, k2) (modulo n). Setting 
(k1, k2) = (Q, 1), we obtain 

(3.9) 2D = 4Z (modulo n), 

and since this has a solution 12, it follows that z4 contains (D,n) as a factor. 
Similarly, by setting (k1, k2) = (1,0) we learn that z 2 contains (D, n) as a factor. 
It follows, if (D, n) > 1, that zl, z., and n all have the nontrivial common factor 
(D, n), in which case (3.3) is manifestly repetitive and so requires less than n2 
abscissas. Since (3.4) is clearly not repetitive, and requires n2 abscissas, (3.3) and 
(3.4) cannot then coincide. This establishes the necessity of condition (3.5). 

Conversely, if these rules do not coincide, form (3.3) is repetitive. It is easy to 
show in this case that two or more values of the pair jl, i2 give rise to the abscissa 
zero. Consider the equation 

(3.10) ilz1 +j2z2 = 0 (modulo n). 
If (D, n) = 1 then the application of Cramer's rule to (3.10) gives 

(3.11) ji = 12 = 0 (modulo n), 
contradicting the immediately preceding statement. Thus, (D, n) > 1 unless the 
two rules coincide. This establishes Lemma 3.2. 0 

In view of the results quoted in item (ii) in Section 1, any s-dimensional lat- 
tice rule with rank 2 has invariants nr, n, with n > 1, and may be expressed 
nonrepetitively in the form 

nr n 

(3-12) Qf =n~2r El Efjn +j22 
- J1~~~i =1 j2=1 

On the other hand, an expression of the form (3.12) might be repetitive, and hence 
not correspond to a lattice rule with rank 2 and invariants nr, n. 
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THEOREM, 3.3. The lattice rule (3.12) is a rank-2 rule with invariants nr, n 
and full principal projections if and only if 

(3.13) (zi,r) = 1 

and 

(3.14) (D1,2, n) = 1, 

where the determinant D1,2 is defined in (3.6) above. 

Proof. We establish this by showing that these conditions correspond precisely 
to conditions (i) and (ii)" of Theorem 2.3. The principal one-dimensional projection 
of Qf is 

(3.15) Qif= Z jE(i 1$ +i22) n 
ir 1 ji2= 

The necessary and sufficient condition that this rule contains nr points is given by 
Lemma 3.1, namely, 

(3.16) (z ,r) = 1, 

(3.17) (Z1, Z,n) = 1. 

The principal two-dimensional projection of Q is 

1nr (n (1,2) 
J 

2___ 

(3.18) Q2f= n-r E E f (' nr +i2 n 

Because of (3.16), an abscissa of the product trapezoidal rule T2nf can arise in 
(3.18) only if jI is a multiple of r. The rule obtained by including only values of ji 
that are multiples of r is 

(3.19) Q2f- fk1=1k2=1 n n 

According to Lemma 3.2, it coincides with the two-dimensional trapezoidal rule if 
and only if 

(3.20) (D1,2, n) = 1. 

Thus (3.16) and (3.17) correspond to (i) of Theorem 2.3, and (3.20) corresponds to 
(ii)". However, condition (3.17) is not needed, as it is a consequence of condition 
(3.20). Since v(Q) clearly cannot exceed n2r, we may apply Theorem 2.3 with 

ni = nr and n2 = n to establish the theorem. 0 

4. Rank-2 Rules Having a Complete Set of Full Projections. In Section 
3 we treated rules having full principal projections. The treatment was based on 
Theorem 2.3. A parallel treatment of rules having a complete set of projections 
may be based on Theorem 2.4. In this section we give the analog of Theorem 3.3. 

THEOREM 4.1. The lattice rule (3.12) is a rank-2 rule with invariants nr, n 
and a complete set of full projections if and only if 

(4.1) (z4, r) = 1, q =1,2, ..., s, 
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and 

(4.2) (Dp,q,n)=l, 1<p<q<s, 

where 

(4.3) Dp,q = Z -PZ q_Z.PZ 
q 

Proof. This follows immediately by applying the result of Theorem 3.3 to all 
projections, rather than just to principal projections. 0 

5. Rank-2 Rules in Tricycle Form. We continue our treatment of rules of 
rank 2 having full principal projections by showing that they can be expressed in a 
convenient tricycle form. We commence with the following lemma. 

LEMMA 5. 1. Let Qf be a lattice rule in the nonrepetitive tricycle form 
r n n 

(5.1) ~ Qf nj2 r E ( +kly' +k2Y2) 
j=1 k1=1 k2=1 

with n > 1. If (n,r) > 1, then Qf is of rank 3. If (n, r) = 1 then Qf is of rank 2 
and has invariants nr, n. 

Proof. When (n, r) > 1, the denominators in (5.1) have a nontrivial common 
factor, and the result (iii) of Section 1 confirms that Qf is of rank 3. When 
(n, r) = 1, there is no common factor and the same result indicates that Qf is 
of rank 2 or less. In this case, the cyclic groups of orders r and n generated 
respectively by x/r and yi/n (using arithmetic modulo 1) may be combined, in the 
manner discussed for example in Section 3 of Sloan and Lyness [12], into a single 
cyclic group of order nr, generated, for instance, by x/r + y, /n. In other words, 
Qf can be re-expressed in the (nonrepetitive) bicycle form 

nr n 

(5.2) Qf = 
2r E 

Z 
+ (r ) 

1=1 k=1 

with z1 = nx + ry1. In view of result (ii) of Section 1, this rule has rank 2 and 
invariants nr, n. This establishes the lemma. 0 

THEOREM 5. 2. Let (n, r) = 1, with n > 1. The lattice rule (5.1) is a rank-2 
rule with invariants nr, n and full principal projections if and only if 

(5.3) (x1,r) = 1 

and 

(5.4) (D1,2,n) = 1, 

where 

(5.5) Dp,q = y -Ya Y 

Proof. The principal one- and two-dimensional projections of Qf are 

(5.6) Q nf = r. jxl L f + ki+ Y r kn n) 
j=1 k,=1 k2=1 
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and 

(5.7) Q2f = n rE E E f (j( - + k, (YY) +k2 (' Y2)* 
=1k=1 k2=1 

The rule obtained from Q2f by including only those terms for which j = r, is 

\-fL(Yi, YiUL2.(Y2, (5.8) Q2f 2 ki E k 1b 
k1=1 k2=1nn 

and coincides, by virtue of Lemma 3.2 and assumption (5.4), with the product 
trapezoidal rule T2nf . Thus Q2f includes among its abscissas the abscissas of T2n f . 
Trivially, then, Qlf includes among its abscissas the point 1/n. Because of (5.3), it 
also includes the point 1/r; and because, (n, r) = 1 it now follows that Qi f = T1ff 
The result now follows from Theorem 2.3. O 

As a special case, we obtain the following: 

THEOREM 5.3. Let (n,r) = 1, with n > 1, and let Qf be a lattice rule given 
in the tricycle form (5.1), with 

(5.9) x1 = 1 and (y Yi 

Then (5.1) is nonrepetitive, and Qf is a rank-2 rule with invariants nr, n having 
full principal projections. 

The next theorem establishes the converse of Theorem 5.3: that every rank-2 rule 
having invariants nr, n, with (n, r) = 1, and also having full principal projections, 
may be expressed in the tricycle form (5.1), with the leading components of x, Yi, 
and Y2 satisfying (5.9). The significance of this result lies in the fact, expressed in 
the last part of the theorem, that x, Yi, and Y2 are thereby essentially uniquely 
determined. It is this uniqueness property that makes the tricycle form potentially 
attractive for some applications. 

THEOREM 5.4. Let Qf be an s-dimensional lattice rule with rank 2 and invari- 
ants nr, n where (n, r) = 1. If Qf has full principal projections, it can be expressed 
in the tricycle form (5.1), with the leading components of x, yl, and Y2 satisfying 
(5.9). The remaining components of x, Yi, and Y2 are uniquely determined modulo 
r, n and n, respectively. 

Proof. Because r is prime to n, the abscissa set may be expressed (as discussed 
in Sloan and Lyness [12, Section 3]) as the direct sum of three cyclic subgroups of 
orders r, n, and n, respectively: 

(5.10) A(Q) = C(r) E C(n) ED C(n). 

Taking X/r, Yi/n, and Y2/n as the generators of the respective subgroups, we 
obtain the nonrepetitive form 

(5.11) Qf = nrE f i + k' n + k n) 
J' =1 k'=lk'2=l 

Because Qf has full principal projections, the two-dimensional principal projection 
Q2f contains the abscissas (1, 0) /n and (0, 1) /n; and since Q2f is nonrepetitive, 
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each of these occurs for exactly one combination of k', k' and j'. Moreover, i' 
must equal r, because r and n are prime. Let yl/n and y2/n be the s-dimensional 
abscissas that arise for exactly those values of the trio k', k', and j' = r. Then Yi 
and Y2 are uniquely determined modulo n. Further, the one-dimensional principal 
projection Qlf contains the abscissa 1/r; thus there is at least one s-dimensional 
abscissa of the form x/r which projects into 1/r. Because r and n are prime, a 
vector of this form can arise only if kI = ka = n; thus the vector x is uniquely 
determined modulo r. 

Now we consider 

1 r n n 

(5.12) Qf =n- x + ki 
Y n k2n) 

j=l kl=1 k2=1 

By Lemma 5.1, this is a rank-2 rule with invariants nr, n. It remains only to show 
that it coincides with Qf. The cyclic subgroup C(r) in (5.10) may be generated 
by any element of C(r) which is of order r. One such element is x/r. The group 
C(n) ef C(n) in (5.10) may be generated by any pair cl, c2, each of order n, 
provided they give rise to n2 distinct elements. One such pair is yi/n and y2/n. 
Thus Qf = Qf, establishing the theorem. 0 

Remark. We note that Theorems 5.3 and 5.4 give the number vp of distinct s- 
dimensional rank-2 lattice rules having invariants nr, n and full principal projections 
as 

(5.13) vp = r8n 2(9-2) 

since the components of x, yI, and Y2 not fixed by (5.9) may be chosen arbitrarily, 
modulo r, n, and n, respectively. 

We conclude with a result for rank-2 rules having a complete set of full projec- 
tions. 

THEOREM 5.5. If Qf is a rank-2 rule with invariants nr, n with (n, r) = 1, and 
Qf has a complete set of full projections in all dimensions, then it can be expressed 
in the tricycle form (5.1), where 

(5.14) x =1 and ( y2) = 

(5.15) (x", r) =1, q = 112,... is) 

and 

(5.16) (Dp,q,n) = 1, 0 < p < q < s, 

where Dp,q is given in (5.5) above. The components of x, yl, and Y2 are uniquely 
determined modulo r, n, and n, respectively. 

The conditions here are simply those from Theorem 5.2 applied in all dimensions, 
combined with those from Theorem 5.3. Note that conditions (5.15) and (5.16) are 
automatic. That is to say, given the rule Qf satisfying the hypotheses of the 
theorem, one may express it in this tricycle form in many ways. One may use 
a representation which satisfies (5.14). However, all representations satisfy (5.15) 
and (5.16). 
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